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Oscillations in a chain of rod-shaped colloidal particles in a plasma
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Oscillations in the one-dimensional chain consisting of rotatorlike particles levitating in a plasma are stud-
ied. General equations of motion for such a chain are derived. It is demonstrated that new oscillation modes
associated with the rotational degrees of freedom appear for such a configuration. The dispersion characteris-
tics of the modes are analyzed. Collective oscillations and equilibrium in lattices composed of cylindrical
particles in a plasma are discussed.
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Experiments@1–4# involving colloidal charged particles
levitating in the plasma have attracted serious attention.
mation of colloidal crystals and phase transitions in th
systems@4# are important fundamental questions. At prese
most of the cases studied experimentally and theoretic
correspond to spherical dust grains.

However, there are recent experimental observations
the formation of colloidal structures composed of elonga
~cylindrical! particles@5,6# levitating in the sheath region o
a gas discharge plasma. The experiments demonstrate
there are various arrangements of such grains, levita
horizontally~i.e., oriented parallel to the lower electrode a
perpendicular to the gravity force! and vertically~i.e., ori-
ented perpendicular to the lower electrode and parallel to
gravity force!. It is therefore time to study collective oscilla
tions modes in lattices composed of such types of grains

In the one-dimensional chain of spherical particles levit
ing in a plasma, the possible lattice oscillations modes
associated with the particle motion either in horizontal@7# or
vertical@8,9# directions. As has been previously noticed@10#,
in the case of the rodlike particles, additional modes app
due to the new~rotational! degree of freedom. The ‘‘liquid
crystal’’ lattices composed of rods will exhibit the rotation
oscillation modes, similar to those in liquid crystals. Exci
tion and interactions of all these modes will lead to n
types of phase transitions and affect those phase transi
existing also in lattices composed of spherical grains. In
Rapid Communication, we report the results of the first
tack on the problem of oscillations in the lattice consisting
rod-shaped particles.

The simplest case corresponds to the rods with given~and
static! charge distribution@10# along the rod length. More
complicated is the case when the interaction of the rod
particles among themselves and with the plasma is stu
dynamically together with their charging, thus demand
that the problem of the charging of rods by the surround
plasma should first be solved. At present, there are only
attempts@6# to tackle the latter. Therefore, some simplifyin
assumptions should be made in order to proceed with
calculation of the oscillation characteristics. Here, we mo
the rodlike particle with the rotator having two charges~and
masses! concentrated on the ends of the rod. For further s
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plicity, we assume that the charges are fixed and the ma
are equal. The rod of the lengthL, connecting these two
charges, has zero radius and mass.

Consider the geometry sketched in Fig. 1. The o
dimensional rod chain is along thex axis, with the distanced
between the centers of masses of the~unperturbed! rotators,
Rn is the radius vector of the center of mass of thenth
rotator ~in our case of equal massesm at the rod ends, the
center of mass is located in the center of the rotator, at
distanceL/2 from its ends!, the angleQn is between thenth
rotator and thez axis, and the anglefn is between thex axis
and the projection of thenth rotator on thexy plane. Assume
that, at the upper end of thenth rod, there is a pointlike
particle~coordinatean) with the chargeqa and massma , and
at the lower end of the same rod there is another point
particle ~coordinatebn! with the chargeqb and massmb .
Furthermore, we assume that the masses of the particle
equal,ma5mb5m, and the corresponding generalization
the case of unequal masses is trivial, with the respec
change of the position of the center of mass along the rota

The radius vectors of thenth rod ends arean5ndex
1Rn1LSn/2 and bn5ndex1Rn2LSn/2, where Sn

5(cosfn sinQn, sinfn sinQn, cosQn). For the four distances
between the ends of thenth and (n11)th rotators we thus
have

ra(b)a
n1 5an2a~b!n11

52dex1~Rn2Rn11!1L~Sn7Sn11!/2,

//
FIG. 1. Sketch of the considered geometry. The rotators of

lengthL separated at the distanced are assumed to be at the angl
Q andf with respect to the reference frame.
©2001 The American Physical Society02-1
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rb(a)b
n1 5bn2a~b!n1152dex1~Rn2Rn11!

2L~Sn7Sn11!/2. ~1!

Here, the upper sign on the right-hand side correspond
raa or rbb , and the lower sign on the right-hand side cor
sponds torba or rab , respectively. For the distances betwe
the (n21)th rod and thenth rod ~e.g., for raa

n2), we
have similar expressions with the simultaneous cha
(n11)→(n21) andd→2d.

Accounting for the oscillatory and rotational degrees
freedom and assuming the nearest-neighbor interactions
Lagrangian@11# of the system is written as

L5
m

2 (
n

~Ṙn!21
I 0

2 (
n

@~ḟn!2sin2Qn1~Q̇n!2#

2qa(
n

Fext~an!2qb(
n

Fext~bn!2qa(
n

@Fa~raa
n1!

1Fb~rba
n1!#2qb(

n
@Fa~rab

n1!1Fb~rbb
n1!#

2qa(
n

@Fa~raa
n2!1Fb~rba

n2!#

2qb(
n

@Fa~rab
n2!1Fb~rbb

n2!#, ~2!

whereI 05mL2/2 is the moment of inertia of the considere
rotator,Fa@raa

n1# is the interaction potential between thenth
and (n11)th a particles, etc., andFext(r ) is the external
potential. Furthermore, we assume for the inter
tion potential the Debye approximationFa(r )5(qa /
ur u)exp(2ur u/lD), wherelD is the plasma Debye length; th
external potential is determined by the action of the grav
and the sheath electric field in the point of levitation; bo
fields act only along thez axis.

The Lagrangian equations of motion are given by

d

dt

]L
] ṡ

2
]L
]s

50, ~3!

where s5(Ri ,Q i ,f i). General expressions for motion an
rotation in all three dimensions are cumbersome and th
fore, for simplicity, we assume that motions are only in t
(x,z) plane such thatSn5(Sx

n,0,Sz
n)5(sinQn,0,cosQn), fn

50, andRn5(xn,0,zn). Thus we find for the motion of the
center of mass in thex direction

2mR̈n52qaFF8~raa
n1!

uraa
n1u

raa
n11

F8~raa
n2!

uraa
n2u

raa
n21

F8~rba
n1!

urba
n1u

rba
n1

1
F8~rba

n2!

urba
n2u

rba
n21

]Fext~an!

]Rn G2qb@•••#, ~4!

where the dots stay for terms analogous to those in the
square brackets~with the interchangea↔b), and Fa8(r )
[dFa(r )/dur u52(qa /ur u)(lD

211ur u21)exp(2ur u/lD) for
the Debye interaction potential.
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Rotations on the angleQ are described by

I 0Q̈n52qaLH F8~raa
n1!

uraa
n1u

@r aa,x
n1 cosQn2r aa,z

n1 sinQn#

1
F8~raa

n2!

uraa
n2u

@r aa,x
n2 cosQn2r aa,z

n2 sinQn#

1
F8~rba

n1!

urba
n1u

@r ba,x
n1 cosQn2r ba,z

n1 sinQn#

1
F8~rba

n2!

urba
n2u

@r ba,x
n2 cosQn2r ba,z

n2 sinQn#1
]Fext~an!

]Qn J
2qbL$•••%. ~5!

General equations~4! and~5! can be used not only to obtai
dispersion relations for small amplitude oscillations, but a
to study mode interactions for larger amplitudes. For sm
deviations from the equilibrium, the oscillations decoup
and linear dispersion relations can be derived.

According to the experiments@6#, there are two preferred
equilibrium positions of levitating rodlike particles: when th
rotators are oriented vertically~i.e., along thez axis in our
geometry, see Fig. 1! and when the rotators are oriented ho
zontally ~i.e., along thex axis in our geometry!. Thus, below
we consider dispersion relations for modes associated
small deviations around these two equilibrium positions.

If there are only small oscillationsdx!min(d,L) of the
centers of mass of vertically oriented (Q50) rotators in the
x direction~which is horizontal, see Fig. 1!, we find from Eq.
~4!

2md ẍn52H qaFFa9~d!1
Fb8~Ld!

Ld
1

d2

Ld
FFb8~r !

r G
Ld

8 G
1qb@•••#J ~2dxn2dxn112dxn21!, ~6!

whereLd5(d21L2)1/2. For perturbations propagating alon
thex axis, Eq.~5! gives the following dispersion equation o
the lattice-acoustic type:

v25
4

2mFqaFa9~d!1qbFb9~d!12qa

d2

Ld
2
Fb9~Ld!

12qa

L2

Ld
3
Fb8~Ld!Gsin2~kd/2!. ~7!

Here, we have taken into account that for the Debye inter
tion potentialqaFb5qbFa . In the limit L!d we recover
from ~7! the standard dispersion relation for the lattic
acoustic wave@7# in the chain of particles with the charg
qa1qb and the mass 2m:

v254
qa1qb

2m
~Fa9~d!1Fb9~d!!sin2~kd/2!, ~8!
2-2
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where Fa9(d)1Fb9(d)5(qa1qb)(212d/lD1d2/lD
2 )exp

(2d/lD)/d3 for the interaction potential of Debye type.
For the horizontally oriented rod chain (Q5p/2, note that

in this case we obviously haved.L) we find

2md ẍn52@qaFa9~d!1qbFb9~d!#~2dxn2dxn112dxn21!

2@qaFb9~d2L !1qbFa9~d1L !#~dxn2dxn11!

2@qaFb9~d1L !1qbFa9~d2L !#~dxn2dxn21!.

~9!

From Eq.~9! ~noting that in the case of the Debye interacti
potentialqaFb5qbFa) we obtain the dispersion relation fo
the acoustic mode

v25
4

2m
@qaFa9~d!1qbFb9~d!1qaFb9~d2L !

1qbFa9~d1L !#sin2~kd/2!. ~10!

In the limit L!d from Eq. ~10! we again recover Eq.~8!.
For small oscillations in the vertical direction of the ve

tically oriented rotators~i.e., parallel to thez axis! we obtain

2md z̈n52qaH FFa8~d!

d
1

Fb8~Ld!

Ld
1

L2

Ld
FFb8~r !

r G
Ld

8 G ~2zn

2zn112zn21!1
]Fext~an!

]zn J 2qb$•••%. ~11!

For the parabolic approximation of the external potential~de-
pending only on z) qaFext(a

n)1qbFext(b
n)5gv(zn

2L/2)2/21gv(zn1L/2)2/2, where ga,b.0, we obtain for
the wave propagating along the chain the dispersion rela
of the optical character@8#

v25
gv

m
1

4

2m H qaFFa8~d!

d
1

Fb8~Ld!

Ld
1

L2

Ld
FFb8~r !

r G
Ld

8 G
1qb@•••#J sin2~kd/2!. ~12!

In the limit L!d we recover from Eq.~12! the dispersion
relation of the optical-like mode@8# propagating in the chain
of particles

v25
gv

m
14

qa1qb

2m FFa8~d!

d
1

Fb8~d!

d Gsin2~kd/2!, ~13!

where Fa8(d)/d1Fb8(d)/d52(qa1qb)(11d/lD)exp(2d/
lD)/d3 for the interaction potential of Debye type.

For vertical oscillations of horizontally oriented rotato
we have~note thatd.L)
03540
n

2md z̈n52Fqa

Fa8~d!

d
1qb

Fb8~d!

d G~2dzn2dzn112dzn21!

2Fqa

Fb8~d2L !

d2L
1qb

Fa8~d1L !

d1L G~dzn2dzn11!

2Fqa

Fb8~d1L !

d1L
1qb

Fa8~d2L !

d2L G~dzn2dzn21!

2qa

]Fext~an!

]zn
2qb

]Fext~bn!

]zn
. ~14!

For the parabolic external potential~note that in this case we
assumeqaFext(a

n)1qbFext(b
n)5gh(zn)2) and the Debye

interaction potential (qaFb5qbFa) we obtain from Eq.~14!
the dispersion relation for the optic mode

v25
gh

m
1

4

2m Fqa

Fa8~d!

d
1qb

Fb8~d!

d
1qa

Fb8~d2L !

d2L

1qb

Fa8~d1L !

d1L Gsin2~kd/2!. ~15!

In the limit L!d from Eq.~15! we recover an equation simi
lar to ~13!. Note that we assumed a slightly different chara
ter of the external potential to allow for the cases of sta
vertically or, respectively, horizontally oriented rotators.

Small rotating oscillations aroundQ50 ~i.e., for verti-
cally oriented rotators! are described by

2I 0

L2
dQ̈n52qaH Fa9~d!~2Qn2Qn112Qn21!1FFb8~Ld!

Ld

1
d2

Ld
FFb8~r !

r G
Ld

8 G ~2Qn1Qn111Qn21!

1
2

L

]Fext~an!

]Qn J 2qb$•••%. ~16!

Here, we note the changed character of the dispersion rel
to the nearest-neighbor interactions, as compared with
previous cases of oscillations of the rotators’ centers of m
~see terms with 2Qn1Qn111Qn21). In the case of the ex-
ternal parabolic potential supporting the vertical orientat
of the rotators~and accounting forqaFb5qbFa), we obtain
the following dispersion:

v25
2gv

m
1

8

mLd
3 @qad2LdFb9~Ld!1qaL2Fb8~Ld!#

1
4

mFqaFa9~d!1qbFb9~d!22qa

d2

Ld
2
Fb9~Ld!

22qa

L2

Ld
3
Fb8~Ld!Gsin2~kd/2!. ~17!

Note that for the Debye-type interaction potential, the fac
at the oscillating term on the right-hand side~rhs! of Eq. ~17!
2-3
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is always positive. This means that although in general th
is the frequency gap, similar~but not equal! to that of the
vertical oscillations of the center of mass of the rotators,
dispersion character is different compared with the case
the vertical vibrations: Because of the sign of the factor
front of the dispersion term in~17!, there is no anomalou
dispersion~i.e., the mode frequency increases with the
crease of the wave number!. We also note the second term o
the rhs of~17!: if positive, it allows rotational oscillations~in
xz plane! in the chain of vertically oriented rotators even
the absence of an external confining~in z) potential due to
the interactions with the nearest neighbors. For the De
screening potential, this term can be either positive or ne
tive depending on the relations betweenL, d, and the plasma
Debye lengthlDe . This property indicates that the syste
can be unstable with respect to rotations of rods on the a
Q; this can have important consequences on the excitatio
the corresponding mode and related phase transition as
ated with the rotational~in!stability in the chains of rotators
Indeed, by changing the plasma characteristics, the origin
stable vertically oriented equilibrium state of rotators c
change its character and become unstable~and vice versa!.
Moreover, for marginally unstable equilibrium, because
the normal character of the wave dispersion, for some wa
lengths the oscillations still can be stable~i.e., when the posi-
tive dispersive term exceeds the negative nondisper
term!.

Finally, consider rotational oscillations of horizontal
oriented rotators~aroundQ5p/2). We assumeQ5p/22q
and obtain@compare with Eq.~14!#

2I 0

L2
dq̈n52Fqa

Fa8~d!

d
1qb

Fa8~d!

d G~2dqn2dqn112dqn21!

1Fqa

Fb8~d2L !

d2L
1qb

Fa8~d1L !

d1L G~dqn2dqn11!

1Fqa

Fb8~d1L !

d1L
1qb

Fa8~d2L !

d2L G~dqn2dqn21!

2
d

L Fqa

Fb8~d2L !

d2L
1qb

Fa8~d2L !

d2L
2qa

Fb8~d1L !

d1L

2qb

Fa8~d2L !

d2L Gdqn2
2qa

L

]Fext~an!

]qn
2

2qb

L

]Fext~bn!

]qn
.

~18!
nd
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From the external potential supporting the horizontal orie
tation of the rotators~and, as usual, taking into account th
for the Debye interaction potentialqaFb5qbFa), we have

v25
2gh

m
1

4

mL
@qaFb8~d2L !2qaFb8~d1L !#1

4

m Fqa

Fa8~d!

d

1qb

Fb8~d!

d
1qa

Fb8~d2L !

d2L
1qa

Fb8~d1L !

d1L Gsin2~kd/2!.

~19!

Again, we note the second term on the rhs of Eq.~19! ~origi-
nating from the nearest-neighbor interactions!: for the Debye
interaction potential, it is always negative and can prev
the stable equilibrium of horizontally oriented rotators ev
in the case of confining~in z) potential. Since the vertica
confinement is usually associated with the properties of
plasma sheath~where the particles are levitated! @9#, we see
that again the change of plasma parameters can lead to
change of the stability characteristics of the horizontally o
ented rods. Depending on the particular character of the
teraction ~and on the plasma parameters!, this feature can
affect excitation of the rotation modes of horizontally o
ented rotators and therefore the related phase transition
the limit L→0 we recover dispersion~13! from Eq. ~19!.

To conclude, we studied oscillations in the chain of ro
tors interacting via the Debye type of potential and levitati
in an external potential in a plasma. We demonstrated
new modes associated with the rotational degrees of free
can propagate in such a system. New features associated
the rotational modes include interesting interplay of inter
tions of the rotators with a plasma~formalized above by
terms containing the external potential! and with themselves
Combination of these interactions strongly affect the equi
rium positions and orientations of the rotators and theref
will influence phase transitions associated with such rota
modes. Further analysis can include computation of the
tators’ levitation for particular plasma sheath models. G
eral equations derived here also allow further analysis
mode interactions when perturbations in rotations toget
with perturbations in rotators’ positions take place simul
neously. Some of these analyses are underway and wil
reported elsewhere.
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