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Oscillations in a chain of rod-shaped colloidal particles in a plasma
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Oscillations in the one-dimensional chain consisting of rotatorlike particles levitating in a plasma are stud-
ied. General equations of motion for such a chain are derived. It is demonstrated that new oscillation modes
associated with the rotational degrees of freedom appear for such a configuration. The dispersion characteris-
tics of the modes are analyzed. Collective oscillations and equilibrium in lattices composed of cylindrical
particles in a plasma are discussed.
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Experiments[1—4] involving colloidal charged particles plicity, we assume that the charges are fixed and the masses
levitating in the plasma have attracted serious attention. Foare equal. The rod of the lengih connecting these two
mation of colloidal crystals and phase transitions in theseharges, has zero radius and mass.
systemg4] are important fundamental questions. At present, Consider the geometry sketched in Fig. 1. The one-
most of the cases studied experimentally and theoreticalliimensional rod chain is along tixeaxis, with the distance
correspond to spherical dust grains. etween the centers of masses of theperturbed rotators,

However, there are recent experimental observations dR" is the radius vector of the center of mass of tité
the formation of colloidal structures composed of elongatedotator (in our case of equal massesat the rod ends, the
(cylindrical) particles[5,6] levitating in the sheath region of center of mass is located in the cenﬂe_r of the rotator, at the
a gas discharge plasma. The experiments demonstrate tiFtanceL/2 from its ends the anglen@. is between theith
there are various arrangements of such grains, levitatinfPt@tor and the axis, and the angle)" is between the axis
horizontally(i.e., oriented parallel to the lower electrode and nd the projection of thath rotator on thexy plgne. As_sur_ne
perpendicular to the gravity forceand vertically(i.e., ori- that,_ at the upper nend_of thath rod, there is a pointlike
ented perpendicular to the lower electrode and parallel to thBartche(coordmatea ) with the chargaj, an_d massh, , an_d .

) . . . . at the lower end of the same rod there is another pointlike
gravity force. It is therefore time to study collective oscilla-

. . o
tions modes in lattices composed of such types of grains. particle (coordinateb™) with the chargeq, and MAasSIM, .
i ; . . . -~ Furthermore, we assume that the masses of the particles are
In the one-dimensional chain of spherical particles levitat-

o X . I equal,m,=m,=m, and the corresponding generalization to

ing in a plasma, the p0_55|ble I_attlce_ OSCI_IIatlon_s modes Athe case of unequal masses is trivial, with the respective
associated with the particle motion either in horizogmlor change of the position of the center of rﬁass along the rotator
vertical[8,9] directions. As has been previously noti¢dd], 9 P g '

. n_—
in the case of the rodlike particles, additional modes appear The radius vectors of thath rod ends area’=nde;

n n_ n__
due to the new(rotationa) degree of freedom. The “liquid iR +Ln3”.’2®nar.'d nb_—ndex+gn II:_S“{ﬁ f Whg_ret g
crystal” lattices composed of rods will exhibit the rotational = (cos¢"sin@", sin¢’ sin®", cosB). For the four distances

oscillation modes, similar to those in liquid crystals. Excita- between the ends of theth and (+1)th rotators we thus

tion and interactions of all these modes will lead to newhave

types of phase transitions and affect those phase transitions

existing also in lattices composed of spherical grains. In this rg&)f a"—a(b)"*?
Rapid Communication, we report the results of the first at-

tack on the problem of oscillations in the lattice consisting of
rod-shaped patrticles.

The simplest case corresponds to the rods with giaed zA
statig charge distributior{10] along the rod length. More | o o
complicated is the case when the interaction of the rodlike
particles among themselves and with the plasma is studiec
dynamically together with their charging, thus demanding
that the problem of the charging of rods by the surrounding
plasma should first be solved. At present, there are only first
attemptq 6] to tackle the latter. Therefore, some simplifying
assumptions should be made in order to proceed with the | -
calculation of the oscillation characteristics. Here, we model /Q/ ny I (n+1 )'7 x
the rodlike particle with the rotator having two chardasd |

I

massepsconcentrated on the ends of the rod. For further sim-

=—de+(R"-R"H+L(S'FS" )2,

R

o} 1
FIG. 1. Sketch of the considered geometry. The rotators of the
*Email address: S.Vladimirov@physics.usyd.edu.au; URL: http:/lengthL separated at the distandere assumed to be at the angles
www.physics.usyd.edu.auiladimi ® and ¢ with respect to the reference frame.
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rB@)b=b”—a(b)”+1= —de +(R"—R"*1) Rotations on the angl® are described by
—L(S"F9" /2. ) O (rht
( 10®"=—q,L nfa [raaxcos,O”—raaZS|n0”]
Here, the upper sign on the right-hand side corresponds to [roa
l.a Of I'yp, @nd the lower sign on the right-hand side corre- .
sponds ta, orr,p, respectively. For the distances between D' (raa) on_ on
the (h—1)th rod and thenth rod (e.g., for r.), we Ir | [raaxcos raazsm ]
have similar expressions with the simultaneous change aa
(n+1)—(n—1) andd— —d. q> (rp
Accounting for the oscillatory and rotational degrees of o [ PaxCoS®"—rpr sin@"]
freedom and assuming the nearest-neighbor interactions, the I"ba |
Lagrangian 11] of the system is written as L,
grangian11] y o' (rl) o  abga)
m ) ) e rbaxcos® rbazsm® ]+—n
c=§2 (R")24 E [(¢™)ZSiPO"+(OM)?] Irbal 70
n
—GpL{---}. (5
_Qa; ‘Dext(a”)—%; q)ext(bn)_qa; [Pa(raa General equation@) and(5) can be used not only to obtain

dispersion relations for small amplitude oscillations, but also
- - - to study mode interactions for larger amplitudes. For small
+Dy(rp) 1= [Pa(ris)+Pp(rhp)] deviations from the equilibrium, the oscillations decouple,
" and linear dispersion relations can be derived.
o . According to the experimen{$], there are two preferred
—Ga [Pa(rha) +Pp(rp,)] equilibrium positions of levitating rodlike particles: when the
" rotators are oriented verticalli.e., along thez axis in our
B B geometry, see Fig.)\and when the rotators are oriented hori-
— o [Pa(rly)+Py(rpy)], (2)  zontally(i.e., along thex axis in our geometry Thus, below
" we consider dispersion relations for modes associated with
wherel ,=mL?/2 is the moment of inertia of the considered small deviations around these two equilibrium positions.
rotator,®,[ra1 ] is the interaction potential between theh If there are only small oscillationgx<min(d,L) of the
and (+1)th a particles, etc., andb.,(r) is the external centers of mass of vertically oriente@ & 0) rotators in the
potential. Furthermore, we assume for the interacx direction(which is horizontal, see Fig.)lwe find from Eq.
tion potential the Debye approximationb,(r)=(q,/ (4)
[r])exp(=|r|/\p), where\ is the plasma Debye length; the
external potential is determined b i i ° Dp(Lg) d?[Py(r)]’
y the action of the gravity 2mexn= — @ (d)+ il
and the sheath electric field in the point of levitation; both Lg Lql T L
fields act only along the axis. ‘
The Lagrangian equations of motion are given by
+Qpl - - -]] (26x" = ox" = sx"Th, (6)

d L L o 3
dt s s % ©)

whereL 4= (d2+L?)Y2 For perturbations propagating along
wheres=(R!,0',¢'). General expressions for motion and the x axis, Eq.(5) gives the following dispersion equation of
rotation in all three dimensions are cumbersome and therdhe lattice-acoustic type:

fore, for simplicity, we assume that motions are only in the

(x,2) plane such thas"=(S",0,8") = (sin®",0,cosO", ¢" . 4 q :

d
=0, andR"=(x",0,z2"). Thus we find for the motion of the “ 72 aPa(d)+ Ay P} (d)+2qaLd blLa)
center of mass in the direction )
L
1N+ 1 yN— +
omizn= —q | % <nr+aa ey P08 o @ (rpa) o 205 P4(L) sirf(kd/2). (7)
|raa aa| | Mba | i .
Here, we have taken into account that for the Debye interac-
®'(rps) a 0De@" tion potentialq,®,=qyP,. In the limit L<d we recover
| Mba IR —Qp[--- 1, (4) from (7) the standard dispersion relation for the lattice-

acoustic wavd7] in the chain of particles with the charge
where the dots stay for terms analogous to those in the firsi,+ g, and the massia:

square bracketgwith the interchangea«—b), and ®/(r)
=d®,(r)/d|r|=—(qa/[r[)(\p *+|r| " exp[r|/np)  for 2_ %2t

the Debye interaction potential. w =4 2m

(®2(d)+Dp(d))sirt(kd/2), (8
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where  ®7(d)+®p(d) = (ga+y) (2+2d/Ap+d?/AB)exp o [eNd D]

(—d/np)/d® for the interaction potential of Debye type. 2MéZ'= = | Ga—g— +ap—y—|(262"— o277 "~ oz )
For the horizontally oriented rod chai®E /2, note that -

in this case we obviously hawe>L) we find [ ®/(d-L) ®(d+L)

( S5z"— 5Zn+ l)

) R R I
2mox" = —[ga®4(d) + gp®p(d) ] (26x"— ox" - ox" )

YAl dyd-L]
—[qa®y(d—L)+qp®}(d+L)](5X"— X" T|%a gy TWgop (97
" ” -1
—[qaq)b(d+L)+qb(IJa(d—L)](5x”—5x“ ). aq)ext(an) ﬂ(bext(bn)
© St Sat LY (14)
Jz Jz

From Eq.(9) (noting that in the case of the Debye interaction FOr the parabolif]: external p(?jtent(aiotne ;[hat in this case we
potentialg,®,=q,®,) we obtain the dispersion relation for SSUMeqaPex(a’) +qpPex(p”) = yn(z")%) and the Debye
the acoustic mode interaction potentiald,®,=q,®,) we obtain from Eq(14)

the dispersion relation for the optic mode

4 ” " " Yh 4 q)’(d) q)k,)(d) q)t,)(d_l-)
wzzﬁ[qaq)a(d)_’_qub(d)+qa(bb(d_L) wzzm 5| Ga ad +q g +0q L
+q,®2(d+L)]sir?(kd/2). (10 dL(d+L)]
qu 5|n2(kd/2). (15)

In the limit L<d from Eq. (10) we again recover E(8). . i .
For small oscillations in the vertical direction of the ver- !N the limitL<d from Eq.(15) we recover an equation simi-

tically oriented rotatorsi.e., parallel to the axis) we obtain  |ar {0 (13). Note that we assumed a slightly different charac-
ter of the external potential to allow for the cases of stable

vertically or, respectively, horizontally oriented rotators.

2méx"=—q, P4(d) + Pp(La) +L_T<I>£,(r)}’ (22" Sma_ll rotating oscillations a_roun®=0 (i.e., for verti-
d Lg Lql T Ly cally oriented rotatosare described by
2lg .. dr(Ly)
ID (A" 0 sGn_ _ " n_@ntl_@n-1 b
i gty e )} )y (200" eld)2e )+{ :
az"
dz CD{)(F) , n, @n+t1l n—-1
For the parabolic approximation of the external poteritiat L_d r (20"+ +0")
pending only on z) gaPex(a@”) +apPex(b") = 7,(2" b

—L/2)%12+ v,(2"+L/2)%12, where y, ,>0, we obtain for 2 o, ()
the wave propagating along the chain the dispersion relation il e —Quf-- -} (16)
of the optical characte8] L s0"
Here, we note the changed character of the dispersion related
! ! 2 ’ ’ ’
w2:ﬁ+i Ua ®ald) + Po(La) +L_Pb(r)} to the nearest-neighbor interactions, as compared with the
m  2m d Lq Lal 1 Ly previous cases of oscillations of the rotators’ centers of mass

(see terms with ®"+ 0" "1+ ®"" 1), In the case of the ex-
, ternal parabolic potential supporting the vertical orientation
+0pl - ']] sirf(kd/2). (120 of the rotatorgand accounting fog,®;,= q,®,), we obtain
the following dispersion:

In the limit L<d we recover from Eq(12) the dispersion s 2 8 2 " 2
relation of the optical-like modg8] propagating in the chain W=t ﬁ[qad La®p(La)+Aal “Pp(L )]
of particles d
d2
/ / + =1 0a®5(d) + Ay Py(d) — 20, — Pp(Lg)
2_ M Qatdp| Pa(d)  Pp(d)| m| & @& L2
= 5 T g sirf(kd/2), (13 d
L2 _
where ®4(d)/d+j(d)/d=— (qa+0p) (1+d/Np)exp(-d/ ‘quﬂfgq’b“d)ls'”z“‘d’z)- 7

\p)/d for the interaction potential of Debye type.
For vertical oscillations of horizontally oriented rotators Note that for the Debye-type interaction potential, the factor
we have(note thatd>L) at the oscillating term on the right-hand siglkes) of Eq.(17)
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is always positive. This means that although in general therérom the external potential supporting the horizontal orien-
is the frequency gap, similabut not equal to that of the tation of the rotator¢and, as usual, taking into account that
vertical oscillations of the center of mass of the rotators, thdor the Debye interaction potentigh®,=q,P,), we have
dispersion character is different compared with the case of
the vertical vibrations: Because of the sign of the factor in

. . - . 2 4 4 d(d
front of the dispersion term i(17), there is no anomalous 2:ﬂ+—[q ®/(d—L)—qgPp(d+L)]+—=|q L)
. e - ; : m mL-@b avrhb m| @ d
dispersion(i.e., the mode frequency increases with the in-
crease of the wave numbevVe also note the second term on @/ (d) dp(d—L)  P(d+L)]|
the rhs of(17): if positive, it allows rotational oscillation§n gt g Tl g |siT(kd2).

xz plane in the chain of vertically oriented rotators even in

the absence of an external confinifig z) potential due to

the interactions with the nearest neighbors. For the Debye (19)
screening potential, this term can be either positive or nega-

tive depending on the relations betwderd, and the plasma Again, we note the second term on the rhs of @4) (origi-
Debye length\p.. This property indicates that the system nating from the nearest-neighbor interactiprier the Debye

can be unstable with respect to rotations of rods on the angli@teraction potential, it is always negative and can prevent
0 this can have important consequences on the excitation ¢he stable equilibrium of horizontally oriented rotators even
the corresponding mode and related phase transition assodi- the case of confiningin z) potential. Since the vertical
ated with the rotationalin)stability in the chains of rotators. confinement is usually associated with the properties of the
Indeed, by changing the plasma characteristics, the originallplasma sheatfwhere the particles are levitae(®], we see
stable vertically oriented equilibrium state of rotators canthat again the change of plasma parameters can lead to the
change its character and become unstahfel vice versp ~ change of the stability characteristics of the horizontally ori-
Moreover, for marginally unstable equilibrium, because ofented rods. Depending on the particular character of the in-
the normal character of the wave dispersion, for some waveeraction(and on the plasma parameterthis feature can
lengths the oscillations still can be stakile., when the posi- affect excitation of the rotation modes of horizontally ori-
tive dispersive term exceeds the negative nondispersivented rotators and therefore the related phase transitions. In
term). the limit L—0 we recover dispersio(l3) from Eq. (19).

Finally, consider rotational oscillations of horizontally ~ To conclude, we studied oscillations in the chain of rota-
oriented rotatorgaround® = 7r/2). We assumé = 7/2— & tors interacting via the Debye type of potential and levitating
and obtain{compare with Eq(14)] in an external potential in a plasma. We demonstrated that

new modes associated with the rotational degrees of freedom

can propagate in such a system. New features associated with
}(25,9”_ SHTL— 597 1) the rotational modes include interesting interplay of interac-

tions of the rotators with a plasmdormalized above by
terms containing the external potentiahd with themselves.

2ly . [ ®l(d) ®/(d)
F&?”:—_qa +th—y

d

d(d—L)  DLd+L)

+H Qg g (89" 59"+ Combination of these interactions strongly affect the equilib-
: rium positions and orientations of the rotators and therefore
Dp(d+L) DL(d—L) 3 will influence phase transitions associated with such rotating
=g T gL }(513”—519” ) modes. Further analysis can include computation of the ro-
) tators’ levitation for particular plasma sheath models. Gen-
d|  ®i(d-L) d (d-L) dy(d+L) eral equations derived here also allow further analysis of
_E{qa SETRE e p mode interactions when perturbations in rotations together
with perturbations in rotators’ positions take place simulta-
3 ‘I’é(d—l-)}%n_ 2qa 0Pex(@") 20, IPex(b") neously. Some of these analyses are underway and will be
gL L 59" L g9 reported elsewhere.
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